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ABSTRACT 

Over the last decade, Quantum Monte Carlo (&MC) calculations for tight binding 
Hamiltonians like the Hubbard and Anderson lattice models have made the transition 
from addressing abstract issues concerning the effects of electron-electron correlations on 
magnetic and metal-insulator transitions, to concrete contact with experiment. This paper 
presents results of applications of “determinant” &MC to systems with disorder such as 
the conductivity of thin metallic films, the behavior of the magnetic susceptibility in doped 
semiconductors, and Zn doped cuprate superconductors. Finally, preliminary attempts to 
model the Kondo volume collapse in rare earth materials are discussed. 

INTRODUCTION 

The determinant &MC method[l] is a powerful technique for understanding the physics 
of itinerant, interacting electrons. Its primary strength is that it treats the correlations be- 
tween electrons exactly, in contrast to other approaches which resort to various simplifying 
approximations. The chief disadvantage is its computational cost, which limits the com- 
plexity of the models which can be considered. Many of the past applications[2] have been 
to the single-band two-dimensional Hubbard Hamiltonian. This model is of theoretical 
interest since it is the simplest lattice Hamiltonian exhibiting both an interaction-driven 
(“Mott”) metal-insulator transition and also long range magnetic order. It is also poten- 
tially of importance in understanding the magnetic and superconducting properties of the 
CuOz sheets of high temperature superconductors. That the model has a single band and 
is in two-dimensions has played a crucial role in making simulations on reasonable lattice 
sizes (up to 16x16 sites) possible. 

As algorithms and machine speeds have improved, however, computational restrictions 
are becoming less prohibitive, and the determinant &MC approach is being applied to 
tight-binding models which include features such as many orbitals, disorder, and higher 
dimensionality. In this paper we will provide an overview of four such applications. First, 
we have studied a model of disordered superconducting films, where there has been a 
long-standing interest in the possibility of a universal conductivity at the superconductor- 
insulator phase transition.[3] Second, we examine the effect of topological randomness on 
magnetically ordered phases, where one issue is the enhancement of the uniform spin sus- 
ceptibility at low temperatures observed in doped semiconductors.[4] We next describe 
the behavior of magnetic correlations when non-magnetic impurity sites are introduced, a 
problem under investigation with recent experiments on Zn doping of ladder compounds 



and high temperature superconductors.[5] Finally, we describe preliminary results on the 
phase diagram of the periodic Anderson Hamiltonian in three dimensions.[6] Here the key 
question is constructing a minimal model which might contain the essential features neces- 
sary for describing the “volume-collapse” transition observed in many rare earth systems. 

In the remainder of this introduction, we will describe in more detail the physics of these 
problems. Following this, section 2 contains a discussion of the &MC algorithm. Sections 
3, 4, and 5 contain the results of our simulations, and section 6 is a brief conclusion. 

i. Most bulk metals, and many alloys, undergo a superconducting phase transition in 
which the resistivity plunges abruptly to zero as the temperature is lowered. Over the 
last two decades, this transition has been exhaustively studied for thin films.[7] When 
small amounts of Pb or Sn, for example, are deposited on a substrate, the resistance 
increases as the temperature is lowered; the material is an insulator. However, as more 
material is deposited, the resistance goes to zero as the temperature is lowered. That is, 
there is a superconducting-insulator transition controlled by the film thickness. These 
experiments have been carried out for a large variety of materials and substrates, and were 
also performed with different tuning parameters for the transition, for example changing 
the magnetic field strength in Bi or oxygen concentration in Ini-,O, samples at fixed 
thickness. 

The remarkable observation is that the “critical resistance” which separates systems 
which are insulating from those which are superconducting is nearly the same for all materi- 
als. This is, of course, surprising, since such universality is normally expected in quantities 
like critical exponents, not in the coupling strength determining the location of a transi- 
tions. There have been a number of analytic attempts to explain this phenomenon,]81 but 
until very recently numeric approaches have been restricted to simplified “boson” models 
in which the electrons are treated as preformed Cooper pairs.[8, 91 

In section 3 we describe &MC calculations for a model of interacting, two-dimensional 
electrons which is known to display a superconducting phase transition as the temperature 
is lowered. We add disorder to this model, and show that a superconductor-insulator phase 
transition is induced, and evaluate the resistance at the transition. 

ii. Doped semiconductors like Si:P exhibit a number of interesting magnetic phenom- 
ena. The basic physics is that of a two-fluid system with both itinerant electrons and 
randomly positioned local moments.[lO] One essential question concerns whether there is a 
low temperature divergence of the magnetic susceptibility x(q = 0). It has been suggested 
that random exchange couplings between moments can lead to isolated spins which have 
a Curie-like contribution to x, Similar rapid increases in the susceptibility as the temper- 
ature is decreased are observed in the quasi-1D TCNQ compounds,[ll] and are likewise 
believed to have their origin in randomness. Section 4a contains a discussion of simula- 
tions of a model of itinerant interacting electrons with hopping disorder which captures 
this behavior. 

Another magnetic system in which controlled disorder can be studied is Zn substitution 
in ladder compounds[l2] and in the cuprate superconductors.[l3] There it is observed that 
antiferromagnetic order can be stabilized by randomness. Recent numerical studies have 
shown that, indeed, short range magnetic correlations can be enhanced by non-magnetic 
defects.[l4] Here we present, in section 4b, a discussion of the effect of non-magnetic 
impurities on long range magnetic correlations and on the Mott metal-insulator transition. 

iii. Many rare earth systems undergo a transition in which the volume is abruptly 
and drastically reduced as the pressure increases. For example, Ce, a particularly simple 



case because the transition is isostructural, exhibits a first order phase transition with 
a 15% change in volume at 8 kbar. There are a number of competing theories for the 
origin of this effect.[l5, 161 At the crudest level, a transfer of electrons between localized f 
and itinerant d orbitals might account for the volume change. Many theories assume that 
electron correlations play a crucial role, because the transition involves a loss of magnetic 
moments. 

In section 5, we describe QMC simulations of the three-dimensional periodic Anderson 
model (PAM). This Hamiltonian has the requisite complexity to allow for the processes 
which may underly the volume collapse transition, namely separate conduction and local- 
ized orbitals and the potential for charge transfer between them; and also the possibility 
of “singlet” formation between electron spins in the two orbitals which would account for 
the disappearance of magnetic moments. 

THE DETERMINANT QUANTUM MONTE CARLO METHOD 

Determinant &MC has proven very useful for evaluating correlation functions in tight- 
binding problems of interacting electrons. Consider the Hubbard Hamiltonian, 

’ = - C tij (c~ucju + CiuC$u ) + C [Ui(Q+ - i)(W. - i) - /%(n;f + nil)] , (1) 

(kib i 

which consists of a kinetic energy term describing the hopping of electrons between nearest- 
neighbor sites i and j, an interaction term giving a repulsion between electrons of opposite 
spin species on the same site, and a chemical potential term which controls the filling.[l7] 
Since our interest will be in disordered models, we have explicitly indicated that the transfer 
integrals tij, interaction strengths Ui, and local chemical potentials pi may be random. The 
Hamiltonian Eq. 1 is “particle-hole symmetric” at pi = 0 so that each site is precisely “half- 
filled”, (ni) = 1, regardless of the values of the hopping and interactions (in the absence of 
charge-density-wave formation). 

In general, QMC methods map a quantum problem in d spatial dimensions to a classical 
problem in d + 1 dimensions, where the inverse temperature ,0 = l/T gives the additional 
length to the lattice. The reason is that in a classical statistical mechanics problem, the 
Boltzmann factor, exp[-PE], is a real-valued function of the degrees of freedom. In a 
quantum mechanical problem the relevant quantity is exp[-,0k] where I? is an operator. 

This exponential of the Hamiltonian operator cannot be computed without diagonal- 
izing fi (that is, solving the problem exactly). However, it is often the case that the 
exponential of the kinetic and potential energy pieces of l? can be separately diagonal- 
ized, for example by working in momentum- or real- space respectively. Unfortunately, 
these constituent pieces do not commute, so the full exponential cannot be broken up into 
the product of the individual exponentials. The trick is to discretize the inverse temper- 
ature p into a large number L of much smaller divisions Ar = ,(3/L and use the “Trotter 
approximation,” [18] 

The discretization of /3 has introduced a small parameter and breaking up the exponential 
is now a procedure which becomes arbitrarily accurate as L increases. This discretization 
of ,0 generates the added “inverse temperature” dimension to quantum simulations. In the 



case of the Hubbard Hamiltonian, k includes the one body terms, the kinetic energy and h 
chemical potential, and V includes the two-body interactions. 

In the “world-line” algorithm, complete sets of states are introduced into Eq. 2, and the 
resulting matrix elements are evaluated analytically. The determinant &MC algorithm in- 
stead reduces the exponential of v to an exponential of a one body operator by introducing 
an integration over an auxiliary “Hubbard-Stratonovich” field, 

e -A7U(nit-~) (niJ.-4) = ie-A7CJ/4 c e-~S(i,L)(Wt-nil). 

S(i,l)=fl 
(3) 

The coupling constant X is given by cosh()\) = exp[ATU/2]. We must introduce a field 
variable S(i, Z) at each spatial site i of the lattice where an interaction is present, and also 
at each imaginary time slice 1 in the Trotter decomposition of exp[-,0&l. 

The final step is to evaluate the trace over the fermion degrees of freedom, which can 
now be performed analytically since the exponentials involve only one-body terms. 

Z= c detMt(S)detA&J(S). (4 
{S(Q)}=*1 

Detailed forms for the matrices A&,, which have dimension the number of spatial sites in 
the lattice, are given in the literature.[l] To summarize Eq. 4, the quantum mechanical 
partition function has been expressed in terms of an equivalent classical problem in one 
higher dimension; 2 is a sum over a classical field indexed by i and I with an argument 
which no longer involves operators but is instead an effective classical Boltzmann weight. 

We conclude with some general comments. First, the scaling of the algorithm is as 
the cube of the number of sites,[l9] because of computations of the determinants of the 
matrices Mg . Simulations of about 100 sites are already fairly computationally intensive, 
indicating why most applications have been to the simplest single orbital models in low 
dimension. Second, we are actually interested in measuring operator expectation values, 
(a) = Z-“Tr[&-PH]. H ere, a might be the charge, spin, superconducting pair, or current 
density on a site or a “correlation function” consisting of a product of two such densities 
on different sites of the lattice. Such traces can easily be formulated in the same way 
as outlined above for 2, and, indeed, measurements of such physical quantities involve 
only accumulating the appropriate elements of the inverse of M,. Finally, there is a very 
important limitation to determinant QMC simulations. The determinants can become 
negative, and in such cases measurements can have impractically large variance. In this 
paper we will deal with situations where this problem does not occur.[20] 

The calculations presented here will be mainly results from determinant &MC, but 
we will also show a few computations using “dynamical mean-field theory” (DMFT).[21] 
This technique also employs an auxiliary-field QMC algorithm, but introduces a local 
approximation to the self-energy, which becomes exact in the limit of infinite dimensions, 
and allows a more complete exploration of parameter space. 

DISORDER-DRIVEN SUPERCONDUCTOR-INSULATOR PHASE TRANSITIONS 

We first study a Hamiltonian of the form given in Eq. 1 with uniform hoppings tij = t 
and uniform attractive interactions Ur = -]U]. In the absence of randomness in the 
chemical potential, this “attractive Hubbard model” is known to exhibit a Kosterlitz- 
Thouless phase transition to a superconducting state as the temperature is lowered off 
half-filling. 
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Figure 1: Left panel: Pairing correlations as a function of lattice separation for different 
disorder strengths, -V/2 < pi < V/2. For V  c 3 the correlations become very small at 
large distances. Right panel: Superfluid stiffness D, as a function of disorder strength. 
Again, for V  M  3 this measure of superconductivity vanishes. The Drude weight D, the 
coefficient of 6(u) in the ac conductivity, a(w), is also shown, and equals D, for this system. 
The lattice size is 8x8. 

In Fig. 1 we show what happens to two quantities which measure whether the system 
is in a superconducting state. The pair correlation function, 

p&j =  ( Ai+j ‘t >  (5) 
will go to a constant non-zero value at large separations j if the state is superconducting, 
and otherwise decay to zero. 

The superfluid stiffness is a second quantity which is non-zero in the superconducting 
state. It is defined in terms  of an appropriate lim it of the current-current correlation 
function, 

D, = -Kz -AT, 

Kz = l-t c(4+z+&J + &Cl+~,u)), 

AT 3 lim ,Y:o L(4s = 0, q?J; Gl = 0)) 

L (q; fbJ = C s,” dr(j,(l, r)js(O, O))eiq.leAiwnT, 
1 

~z(l, r> = CT 
[ 
it C(c~+s,ucl,u - cf,,cl+e,u )I ewHT. (6) u 

Here w, = 2nn/,B. In the right panel of Fig. 1 we show D, as a function of the randomness 
V  in the chemical potential. Disorder drives a transition to a state in which the pairing 
order is destroyed and the superfluid stiffness vanishes. 
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Figure 2: Left panel: dc resistivity as a function of temperature for different disorder 
strengths. For V z 3 the traces show a transition from superconducting (dp/dT > 0) to 
insulating (dp/dT < 0) behavior. pQ = tL2/4e2 is the quantum of resistance. Right panel: 
Density of states N(w) as we sweep through the transition. For both panels, the lattice 
size is 8x8. 

What happens to the resistivity, P&-, the experimentally most interesting quantity, as 
we cross through this transition ? In the left panel of Fig. 2 we show & as a function of 
temperature. This plot looks remarkably similar to that seen in experiments[7]: a family 
of traces exhibiting insulating behavior is separated from a family where the resistivity 
decreases as T is lowered, with a roughly constant separating curve at a critical disorder 
strength. (This value is consistent with estimates of the transition point obtained from the 
data of Fig. 1.) The value of the critical resistance is roughly the same as that obtained 
in previous numerical studies of bosonic models, which are the lUl/t -+ co limit of the 
Hamiltonian considered here.[8, 91 This value is about twice that observed experimentally, 
a disagreement which may be due to the lack of long range Coulomb repulsion in the model. 
We are currently studying this issue in greater detail. 

The right panel of Fig. 2 shows the density of states (DOS). Interestingly, the gap in 
the density of states which exists in the superconducting phase is not destroyed when the 
disorder is increased to large enough values to suppress pair correlations and D, (Fig. 1) 
to zero. This is in contrast to results[22] for the repulsive Hubbard model in which the 
analogous long range AF correlations appear to be necessary for the existence of a gap in 
N(w). The DOS was obtained using the ‘Lmaximum entropy algorithm.” [23] Our results 
show that this technique works well even in the presence of disorder and the associated 
error bars from disorder averaging. 

DISORDER-DRIVEN MAGNETIC PHASE TRANSITIONS 

In the previous section we saw that random chemical potentials drive a superconducting- 
insulator transition and evaluated the resistivity at the transition, a quantity which exhibits 



a roughly “universal” value experimentally. Just as disorder interferes with long range pair- 
ing order in the attractive Hubbard model, it also can affect magnetic correlations in the 
repulsive case. In this section we describe simulations of these effects in models which have 
been suggested as appropriate to P doped Si, and Zn doped LaCu04. 

Random Bond Models 

It is believed that the random hopping Hubbard Hamiltonian, and its strong coupling 
limit the random exchange Heisenberg Hamiltonian, might be appropriate models of the 
behavior of the magnetic susceptibility in doped semiconductors.[25] The idea is that as the 
randomness is increased, singlets can form on strong bonds, instead of the magnetically 
ordered phase in which all spins are correlated, which is the ground state in the clean 
limit. Depending on the topology, some single spins may be left isolated in this process 
of singlet formation, and these spins contribute a divergent Curie term to the magnetic 
susceptibility at low temperatures. While the Hubbard case has been studied analytically, 
and numerically on small lattices, &MC simulations in two dimensions have only recently 
been reported.[4] H ere we review simulations of Eq. 1 in which the interactions Ui = U > 0 
and chemical potentials pi = 0 are constant, but the hopping is disordered, t - A/2 < tij < 
t + A/2. We show that indeed, anomalies in x do appear. 

The left panel of Fig. 3 shows the spin-spin correlation function, 

C(1) = (M,+*A!f~) = (( %+lt - %+l.J) (ni? - %J>> > (7) 

as a function of separation for different disorder strengths. C(1) exhibits a characteristic 
alternating pattern indicative of antiferromagnetism. Bond disorder steadily suppresses 
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Figure 3: Left panel: Spin correlations as a function of lattice separation for different 
disorder strengths. For A M 1.6, a finite size scaling analysis indicates the absence of long 
range order. Right panel: Uniform susceptibility as a function of temperature. In the 
presence of disorder and interaction, x is enhanced. The “prime” on A indicates the use 
of a specific type of correlated disorder discussed in Ref. (41. 



these correlations. A finite size scaling analysis indicates that for A > A, M 1.6 the AF 
order parameter vanishes, and, instead, a singlet phase emerges. 

The right panel of Fig. 3 exhibits the behavior of the uniform susceptibility, 

x = c s,” d+rHM;+le-THMf), 
I 

for different parameter regimes. The solid curve shows the noninteracting limit. In the 
presence of interactions, and at a small disorder value, x(0,0) is reduced below this U = 0 
value. (The AF response, x(r, n) is, of course, dramatically enhanced.) Meanwhile, for 
A = A, the uniform susceptibility instead shows a significant increase. 

Nonmagnetic Impurity Models 

We now turn to a model in which the hopping and chemical potential in Eq. 1 are 
uniform, but the interactions are random.[5] Specifically, we choose to set Ui to zero at some 
fraction f of the sites of the lattice. One motivation for studying such a model is a purely 
theoretical one. The Hubbard Hamiltonian at half-filling exhibits both a Mott metal- 
insulator transition when the energy cost U for double occupancy exceeds the bandwidth, 
and also AF order. There has recently been considerable discussion concerning whether 
a Mott gap can open in the absence of symmetry breaking such as that associated with 
AF order.[24] A model with a fraction f of sites with Ui = 0 might separate these two 
phenomena, since the Mott gap will be shifted from half-filling to a density (n) = 1 + f, 
while AF order is likely to remain at half-filling due to cornmensuration effects. 

An experimental motivation for the model is provided by studies of the effect of doping 
non-magnetic impurities like Zn into ladder compounds and oxide superconductors. One 
observation is that, in the latter case, AF order persists out to a Zn concentration of 
XC = 0.10 - 0.15, far larger than the amount of doping with an isovalent element like Sr, 
XC w 0.03, required to destroy AF. 

In Fig. 4 we give results of DMFT simulations of the Hubbard Hamiltonian with Ui = 0 
impurity sites. The left panel shows the phase diagram, and demonstrates the interesting 
feature that turning on randomness enhances the region of stability of the AF phase. In 
finite d the region of AF order at zero defect density, f = 0, will be shrunk down to 
half-filling (n) = 1, but the enhancement remains and AF order persists significantly away 
from half-filling. Unfortunately, because of this stabilization of AF order out to the density 
(n) = l+f, we conclude this model does not exhibit a separation of Mott and AF behavior. 

The right panel of Fig. 4 shows the DOS. At half-filling the DOS for the U = 8t sites 
shows typical AF structure, two broad Hubbard bands, two quasi-particle peaks at low 
energies, and a gap at the Fermi energy. Surprisingly, there is an induced gap in the AF 
phase, even for the U = 0 sites, despite the absence of interactions there. The lower plot 
shows that at n = 1 + f = 1.11, the position of the Mott transition, there is still AF order. 

VOLUME COLLAPSE TRANSITIONS 

Several Lanthanides exhibit phase transitions under pressure characterized by abnor- 
mally large volume changes (14 % for Cerium and 9 % for Praseodymium). The physical 
mechanisms responsible for these transitions have been debated since discovery of the 
Cerium phenomenon over 50 years ago. Currently, the two main viable conjectures are a 
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Figure 4: Left panel: Phase diagram of the Hubbard Hamiltonian as a function of filling 
and concentration of defect sites within dynamical mean field theory. The disorder extends 
the region of long range AF order to larger doping. A disordered phase (D) is dominant 
at high carrier and defect doping. Right panel: The density of states on the U = 0 and 
U = 8 sites at a) half-filling and b) (n) = 1.11. 

Mott transition of the 4f electrons accompanied by magnetic ordering[l5] and a “Kondo 
volume collapse” due to rapid change in the 4f-valence electron coupling.[16] In both cases 
the strongly correlated nature of the 4f electrons is fundamentally implicated. To model 
such a transition it is necessary to consider systems with separate conduction and localized 
orbitals to allow for the transfer of charge between them and also for Kondo screening of 
the local moments by the conduction electrons. Indeed, our studies of single band models 
put the transition at grossly incorrect values of the ratio of interaction to bandwidth.[6] 

In Fig. 5 we show the phase diagram we have obtained for the three dimensional periodic 
Anderson model. The precise Hamiltonian we have studied at this point consists of a cubic 
array of conduction sites hybridized to their near-neighbors by t,, = 1, and also connected 
to localized orbitals (t ff = 0), with an inter-orbital hybridization tjv. on near-neighbor 
sites. We have fixed the repulsion Uff = 8 on the impurity sites, left the conduction 
electrons non-interacting, U,, = 0, and explored the properties of the system as we vary 
temperature and tjv. 

We are still in the process of connecting these &MC studies to accurate calculations 
of the band structure in order to extract thermodynamic behavior and the details of the 
volume collapse transition. 
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Figure 5: Phase diagram of the periodic Anderson model in three dimensions. At the lowest 
temperatures the local moments order antiferromagnetically (AF). At higher temperatures 
there are two distinct disordered regions, separated by a fairly narrow cross-over (hatched 
area). A paramagnetic (PM) region exists at small tjv and a “Kondo singlet” (KS) region 
at large tfv. These are distinguished by having small (large) values of correlation between 
near-neighbor f and d electron spins, respectively. The lattice sizes simulated were 43 and 
63. 

CONCLUSIONS 

In this paper we have discussed a number of recent determinant &MC simulations of 
tight-binding Hamiltonians which incorporate some of the complicating features, including 
disorder, non-trivial orbital structure, and higher dimensionality, which are necessary to 
describe realistic materials. A significant amount of work remains to be done before these 
calculations provide compelling descriptions of the experimental properties of solids. While 
some problems have been solved, for example the extension of maximum entropy methods 
to obtain dynamical information in disordered systems, significant bottlenecks include 
adequate treatments of the sign problem to generalize the fillings which are accessible and 
also to make more practical the study of intersite and interorbital repulsion. 
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